
CIT 52600 42100 BIG DATA ANALYTICS 1

Targeted Password Cracking with OSINT Data
Benjamin Rader

IUPUI
Purdue School of Engineering & Technology

Abstract—Password convenience stems from how humans choose passwords out of memorability. Moreover, passwords can closely
relate to publicly available information connected to the person that creates them. Therefore, OSINT (Open Source Intelligence)
techniques can be used to curate memorable and publicly available points of data around that entity. The substantive parts of the data
and unique keywords can then be used to build wordlists for targeted password-guessing attacks against a particular user’s password
hash. Traditionally this involves combing keywords into massive combinations while appending other common words, patterns, or
characters based on assumptions about password choice. However, many passwords are memorable because they form readable
phrases, involve a human understanding of entities, or the password uses content words like pronouns in ways that are unique to
human thinking. I propose that the security of these types of memorable passwords hinges on the ability of AI models to generate
these sorts of targeted wordlists and on the availability of such models to mal-intent individuals. I conducted targeted wordlist
generation using a traditional manual permutative approach with 2 public tools (Cordialie and Mentalist) along with an AI and machine
learning approach using 2 more public tools (GPT3 and OMEN+). All methods utilize a custom wordlist composed of data that can be
obtained through social media and sometimes compromised plaintext password datasets are used to train models. The author’s social
media page is used as an example, and generated wordlists are compared to an old password using string similarity algorithms such
as Damerau-Levenshtein and the Jaccard Index. Results show that GPT-3 and OMEN+ wordlist generation underperforms when
compared to even the more naive Cordialie program. I hypothesize that AI and ML-based implementations are currently more useful for
cracking large compromised sets of password hashes and that manual permutative methods are currently more performant in targeted
attacks. In general, targeted attacks require more sophistication and maturity before becoming a viable method for the average hacker.

✦

1 INTRODUCTION

THERE are three types of factors of authentication. That
is, there are three general categories to ponder when

looking at how to validate an identity. One can authenticate
someone’s identity by looking at what they know, what
they are, or what they have. [11] What one may have
could be some form of a key, maybe an item that no one
else knows about except the entity that is validating your
identity, or even a literal key whether it utilizes digital or
physical means. Locks authenticate people because they
have a key that has notches which match the configuration
of the pins in the lock core [32]. What you are could be
hidden in your DNA, your fingerprints, your eyes, or even
your voice. Although it could be argued these are a form
of what you have, these generally refer to biometric-related
keys. Lastly, what you know refers to information or data
stored in your brain. The most common manifestation of
“what you know” authentication are passwords.

Passwords are still the dominant method for authentication
[27]. 80% of data breaches involve password attacks at some
step of the attack chain [8]. Research also shows that using
MFA (multi-factor authentication) can stop 99.9% of attacks
[31]. However, it is unrealistic to think that every person
and organization has the knowledge or the will to execute
such a task. Therefore, we must look at the root issues with
passwords, considering that most things are secured with
them in some form.

1.1 Basics of Password Cracking

A login form that utilizes an email address and password
input are self-explanatory. A complication arrives when one

focuses on the comparison step where the password given
is compared with the password stored by the authenticator.
An insecure implementation will directly compare the
given password input with the plaintext password that
is associated with the email address. The attacker will
immediately have the information needed to login as long
as they can see this data in transit or in storage. This leaves
for a much easier attack. In a secure implementation, the
password is not stored in plaintext but rather as a “hash
[25].”

A hash is simply the output of a hash function, and
in this case, the input for the hash function is a password
and the outputted hash is really just a set of pseudo-random
characters. A hash function uses a “trapdoor” or one-way
function. If given an input, say a string, then that string
input will always generate the exact same outputted hash.
In other words, it must be deterministic. Additionally, there
are other characteristics that make up hash functions: it
should be very unlikely that two different inputs produce
the same output, should be easily computed, and accept
all input lengths. Most importantly, the one-way function
must be that - one way. Another word for this is preimage-
resistance. If an attacker has the outputted hash, then it
should be impossible to find the input of that hash without
implementing a brute-force attack or by trying inputs [13].
There cannot be a guaranteed way to find the input of the
hash which is faster than just trying inputs and comparing
them to the known hash. This is how password cracking
is done. The attacker will simply try inputs with the same
known hash function till they obtain the same hash output.
There could be collisions or chances of finding a different

CIT 52600 42100 BIG DATA ANALYTICS 2

input for the same output but this is unlikely [25].

1.2 Stats on Password-Related Attacks
First off, password reuse is a rampant issue especially for
attack vectors like password sprays and the more targeted
hacks. One effort was done by SpyCloud over a set of
1.5 billion compromised log-in combinations (email and
password), and they found that 60% of the credentials were
reused across multiple accounts [24]. A password manager
is a quick fix, however it does not address the root problem.
Password strength is an issue already. Data shows that
most people still use short passwords that can be cracked
in a fraction of a second and websites still allow this [7].
Some websites have forced a change or forced the use of
MFA. However, even this cannot completely mitigate future
issues. That is, once artificial intelligence is leveraged more
for password cracking, then memorized passwords could
become more obsolete.

1.3 Are Passwords Secure?
Passwords that are long enough and with enough entropy
are indeed, at the moment, secure. This is especially true for
the average person which is likely not the target of a nation-
state level threat with the means to crack very long pass-
words. This doesn’t take into account other attack vectors.
However, there are cases where it is reasonable to assume
that nation-state level threats are “brute-forcing” longer
passwords. This could be the case for internal passwords
such as one for root access or admin rights where MFA
maybe isn’t used. Such attacks are not well-known because
of their nature, but the possibility is not unreasonable. How-
ever, these types of brute force attacks are easier to quantify
and much harder to pull off, unless you have massive capital
for computing infrastructure [4]. The real potential problem
is AI-based attacks that can crack memorable passwords.

2 LITERATURE REVIEW

2.1 Passwords and Memory
Considering passwords are a form of “what you know”
authentication, then the definition implies that you need
to have the ability to remember it. One survey showed
that 41% of people memorize their online passwords [30],
and other surveys say that 53% of people memorize them
[18]. This is the case, even for most password managers,
where you need to know the password to the password
manager. The generated passwords from those various
tools themselves might not be feasibly memorable or at
least not cost effective for using the password managing
tool. Still, the main password is, and most people don’t
even use password managers for a number of reasons:
suspicious of the security, inconvenient, or didn’t know
about them. Therefore, one can assume that most passwords
are memorable ones.

Evidently, memorable passwords have quite of few
inherent flaws. If someone knows you enough, then they
can probably guess your password. Unfortunately or not
so unfortunately, language is complex and people can
remember all sorts of things or simply not share memorable

things with others or publicly online. Additionally, you
must have the intuition on how humans construct their
passwords [16]. Nonetheless, the nature of social media
and the lack of infrastructure on the Internet that cultivates
privacy practices with personal data creates opportunities
for cracking memorable passwords. Not to mention, most
users never check their privacy settings so it is likely that
this information can directly or indirectly be obtained [19].

However, it should be mentioned that such vulnerable
memorable passwords only have weaknesses because
the memorability is connected to personally-related
information. Some password memorability characteristics
rely on the memorability of patterns in cases of slightly
more security-aware users. Some experiments showed
that encouraging users to create a ”password formula” is
effective at creating memorable and strong passwords that
are not loosely connected to the person in any way. By
memorizing the formula or pattern, the user can expand
the formula to limitless passwords while only needed to
memorize the pattern or formula [35].

Some scholars such as Woods and Siponen, argued
that this is merely a problem of users not having
motivation to remember, confidence to remember, or a
basic understanding of memory [33]. Another experiment
they conducted, showed that having the user verify their
password often or multiple times increased memorability
from around 40% to 70% [34]. However, people still have,
on average, around 40 passwords [18], and most people use
password managers for this very reason [30]. In theory, it
may seem like a good idea to simply improve your memory,
but this in inconvenient.

2.2 Password Managers

Password Managers can directly combat any problem of
password memorability because the passwords that are
stored in the manager application do not have to be re-
membered. Additionally, most password managers have
password generators built into them which can generate
passwords or passphrases that can’t possibly relate to the
user in any way. Essentially, these passwords have lots
of entropy and are practically random [31]. In Verizon’s
annual data breach report, they had recommendations for
companies. The top three recommendations were to use
two-factor authentication (not just a password), do not
reuse passwords, and to use a password manager [8]. In
another study from Yubico and the Ponemon Institute, it
was found that most respondents, including ones in IT
fields, did not improve credential management by using a
password manager, but rather they simply used ”stronger”
passwords. This is problematic, because password strength
will, at some point, mean that the password is inherently
hard to remember. Not using a password manager can
slowly turn into a problem [21]. Some conducted surveys
show that people don’t use password managers because
they are not sure they need one, or they are not sure that the
password managers are secure [30]. Even more problematic,
a 2019 study from Carnegie Mellon University indicates
that only a small portion of password manager users utilize

CIT 52600 42100 BIG DATA ANALYTICS 3

the password generator [1]. Using password managers still
requires that users choose good passwords.

2.3 Untargeted vs Targeted Guessing
With password memorability in mind, there two ways that
threat actors can take advantage of this weakness. Firstly,
attackers can learn the general nature of memorable pass-
words and use the learnt patterns to guess other passwords.
With these patterns, they can go for a ”wide-nozzle” type
of attack and attempt to crack a list of password hashes
- hoping to exploit the low hanging fruit. Such an attack
doesn’t focus on the individual characteristics of the victims
who created the passwords. The wide-nozzle or password
spray relies on the general patterns. Considering that most
people use weak passwords [18], this type of attack can be
cost effective in saving time while still resulting in cracked
hashes. On the contrary, a second extension of this attack can
combine the macro-social characteristics of password mem-
orability with the individual components: personal data,
open source intelligence, and even personal acquaintance.
In other words, we can combine peoples’ password patterns
with the data points of a specific person to pull off a targeted
attack. However, this type of targeted attack assumes you
understand the target well enough, and it also assumes
that the password cracker targets patterns that the target
happens to use. There is a high chance that once of these
pieces are missed considering the sheer scale of language
and personally-related keywords [17].

2.4 Wordlist Generation (Creating Dictionaries)
As explained in the introduction, password cracking
generally refers to hashing inputs till the desired hash
function output is obtained. In which case, this means
that the password has been found. Password cracking and
especially brute-force approaches, rely on computational
efficiency when working with larger passwords. Lists
are simply the most efficient way to try inputs for hash
functions. Most password cracking software or scripts work
with the GPU (graphics processing unit) or even specialized
processors which can crack passwords at ludicrous speeds.
These tools maximize the computational efficiency and
leave the guessing methods up to the user who is knows
the patterns. The name of the game isn’t password cracking
but rather wordlist generation. The best generated wordlist
should include strings that are close in mathematical
proximity, semantics, and structure to the actual password
or passphrase.

I am defining two approaches to generating wordlists
(targeted or untargeted):

1) Explitcly Defined Generation
2) AI Defined Generation

2.5 Explicitly Defined Generation
One can view the process of creating wordlists as always
involving a neural network of sorts. For the case of ex-
plicitly defined generation, wordlist creation is manually
guided and defined by the user or person. To an extent,

the password cracker’s mental model becomes a tool for
generating wordlists. However, it is absurd to think that a
person can output enough guesses to crack any passwords.
Most passwords will take hundreds of thousands of guesses,
even with smart guessing strategies. It is more pragmatic
to take an automated password mangling approach which
utilizes human chosen keywords that are related to the
victim and how passwords are creating. Password mangling
has two parts. First, various patterns and common password
structures are assumed or defined. Second, these patterns
and structures are combined with keywords or any data
points that are applicable to the victim. The password
mangler or wordlist generator uses patterns, assumptions,
or keywords to create combinations of points of data and
common password components to generate wordlists of
likely passwords. There also exists ways of automatically
training password cracking tools to generate mangling rules
from datasets [6]. Mangling is a programmatic and manual
approach to creating wordlists, but can still be very power-
ful and effective especially since deep learning and machine
learning cannot easily make the same assumptions about
patterns as humans.

2.6 AI Defined Generation

AI defined generation uses AI models instead of human
thinking to structure, define, and create wordlists. AI
models can guess those which password manglers can’t.
That is, unless AI or ML models are being use to generate
mangling rulesets or define patterns to be used for wordlist
generation. In those cases, the success rate for password
cracking has shown to be dramatically better than a person
defining the mangling rules themselves. This is because
every person has their own assumptions about how
individuals create their passwords [20] [3]. The difference
is that AI models can, to an extent, learn these patterns
and apply them. This can manifest itself in the form of
supervised or unsupervised learning, but the main point
is that the AI model is applied instead of human thinking
to generate the wordlists or permutative and mangling
rulesets.

Some of these AI models rely on phonetic patterns,
some on keyboard path biases, some on semantic patterns
[36], and even some on knowledge and ontology relations
such as those that make up Wikipedia [12]. It seems that
most of these AI models are not flexible in the types of
password patterns which they exploit. Nonetheless, many
of them are quite performant in cracking.

Password mangling can be directly applied to both targeted
and untargeted attacks and so can AI models. However,
in terms of targeted vs. untargeted approaches, the cost-
effectiveness of various attack vectors and strategies will
noticeably differ across password guessing AI models. For
instance, most of the AI password cracking models focus
on the characteristics of large datasets of compromised
passwords, but do not focus on targeted password
components such as date of birth, family member names, or
other points of personal data. In other words, most existing
models cannot be fed OSINT data to generate passwords

CIT 52600 42100 BIG DATA ANALYTICS 4

for profiled or investigated individuals. Evidently, these
models would be more useful in cracking larger portions
of compromised password datasets rather than targeted
attacks on specific individuals. Fortunately for the public
but not for this study, there are only a few publicly available
data models which can utilize personal data with AI models
to craft better password guesses. These include the Ordered
Markov Enumerator ”plus” (OMEN+) model [10] and a
version of the Generative Pre-Trained Transformer 3 (GPT3)
model [16]. Just as with any AI model, these targeted attacks
require a lot of personal data. OMEN+ can be trained on a
large password data set, and then use a file with ”hints” or
keywords in them to give the enumerator password hints.
The targeted password guessing GPT3 model is trained on
10 thousand users, including usernames, phone numbers,
and personal descriptions. The smallest ”Ada” model from
the OpenAI API models was used. The training data of
the ten thousand users was then paired with the users’
passwords. This allowed the GPT3 model to learn how to
correlate users’ personal data with passwords. However,
this is a small dataset to train GPT3 on. The training data
for GPT3 was crowdsourced from the password recovery
website ”Hashmob [16].” The research for both of these
models showed that untargeted cracking attacks could be
drastically improved, and targeted attacks only seemed
to effectively work on distributions close to the datasets
(overfitting).

2.7 OSINT

Before one can utilize open source intelligence, they must
know the scope of the task. Osint is defined as such: ”OSINT
is publicly produced and publicly available data that can
be collected and shared without breaking corporate or
public laws or policies, needing a warrant, or participating
in what would be commonly considered shady practices
[28].” It is vital to be explicit about the definition of OSINT,
because other illegal methods could be more effective
at obtaining keywords for password cracking. However,
those options are not available in legal research or without
express permission. Therefore, this research focuses on
data obtained during OSINT investigations, simple search
queries, or public knowledge about individuals and
entities. A report from the Security Insiders states that ”34%
of OSINT practitioners reported that they had no prior
experience with OSINT collection and 85% have received
little or no training in OSINT techniques and risks [2].”
It is likely, that most cybersecurity practitioners, OSINT,
or Threat Intelligence investigators do not completely
understand the scope of OSINT when it comes to obtaining
somewhat-personal data on a person. In the case of social
media, this would mean not impersonating actual people
who are related to a target, not breaking terms of service,
and especially not hacking individuals to obtain data.

There is not a lot of statistics or data that specifically
talk about personal data exposure, how much data the
typical person has publicly available, or studies that detail
the ease of it. Generally, OSINT (open source intelligence) is
straightforward and can be leveraged by the most amateur
threat actors. OSINT refers to the procurement of publicly

available data without violating laws or policies defined by
data owners. OSINT curation on a target can be manual
or automated, tool-based or native to the system they are
scraping, and one can typically do so with little effort. Most
users don’t utilize privacy settings on social media to their
fullest either. One study in 2018 showed data relevant to
OSINT and specifically social media. In the study, 23% of
participants shared personal information on social media,
46% used their real names, 45% used their real pictures
for their profile, 54% did not attempt to read the privacy
statement or terms, and 80% of the participants neither
check the social media company practices nor know about
the privacy settings of their own profile. [5]. In a separate
2018 study with about 1400 respondents, about half of
the respondents never checked their privacy or security
settings for apps [19]. There may not exist a lot of data to
show exactly how much data is exposed on the internet
that is leverageable in targeted attacks. However, we can be
sure with this data there is a motive to take advantage of
the lack of awareness and minimizing of publicly available
personally identifiable information (PII). Overall, it is rather
elementary to obtain data about someone that can be used
for cybercrime.

3 SYSTEM DESIGN

3.1 Ideal Scenario for OSINT-Based Attacks

In an ideal scenario, we would have millions of points of
data that include 1. Unstructured textual data scraped from
public social media accounts and 2. Passwords of those
social media accounts or other user-associated accounts.
Problem being, that such datasets do not exist and cannot
ethically or legally be created. As mentioned earlier, there
are crowdsourced workflows that could procure substantial
amounts of this data, but it would not be enough data
to train naive AI models. If there existed such a dataset,
then we would merely train an AI model (take your pick)
to generate potential passwords or wordlists based on the
unstructured textual data. There are numerous models that
could utilize this including but not limited to knowledge
graph based implementations, generative adversarial net-
work (GAN) models, recurrent neural networks (RNN),
generative pretrained transformers (GPT), and many more.
In this ideal scenario, the model could be unsupervised or
supervised and learn patterns of personal data compared
to the passwords that are used. However, as stated before,
such datasets do not exist or are not available to the public.
Therefore, a more hypothetical and unorthodox approach
must be taken which assumes a lot of variables.

3.2 Targeted Keyword Permutation & Word Mangling
Design

Word mangling or what I would call ”keyword
permutation” is a partly manual and partly automated
process. It was stated previously, word mangling requires
an understanding of what makes passwords memorable or
more likely to be used and also data about the target. This
data can be obtained with a variety of OSINT techniques.
In this case, I utilize a URL scraper that creates wordlists
from the stopwords and data at the URL. This part can

CIT 52600 42100 BIG DATA ANALYTICS 5

be as manual or as automated as desired. However, more
data will require larger wordlist creation during the word
mangling process. Therefore, the attacker should choose
keywords wisely.

The process which I have designed for this case will
pull keywords from a social media page. I could look
at the ”word2vec” distance or semantic similarities with
something like ”spacy” to see if that social media textual
data is similar to data that I will manually put down that
pertains to my real password. However, my knowledge
of semantic models and word embeddings is limited, so
no semantic analysis will be done for either password
mangling or the subsequent AI model tests. The keywords
from the social media page will be used to generate
wordlists by using selected word mangling tools from
GitHub. Steps will then be duplicated using manually
inputted keywords that I provide to the mangler tools. This
will allow for a comparison between completely automated
and partly-manual word mangling strategies.

3.3 Targeted AI-Based Wordlist Generation Design
Targeted implementations of password-applicable AI mod-
els are far and few. In fact, utilization of the available models
is often limited in wordlist generation speed and volume.
Therefore, a targeted approach for AI-based wordlist gener-
ation will only utilize a small number of password guesses.
Guesses will be on the scale of thousands rather than
millions, billions, or trillions.

3.4 Hardware Utilization & Constraints
This project focuses on what is readily available to the
average attacker and not advanced state nation-level threats.
Most GitHub implementations do not compute using the
GPU (graphical processing unit) which can lend to great
cracking speeds, and some of the code is in program-
ming languages that are not optimized for rapid operations
(Python). Therefore, speed will only be recorded if it lends
to the cost effectiveness of the implementation. Runtime
for particular algorithms and wordlist generation will be
recorded when the datasets or wordlists are large and the
computation speed is noticeably affected.

3.5 Dataset Use
Plaintext password datasets are only used for the OMEN+
model. Training the other models manually was not within
the scope of this project.

OMEN+ was trained using numerous available datasets:

1) rockyou.txt
2) 3 explicitly-named website’s breach data (I won’t

name these in an academic paper)
3) hak5.txt
4) honeynet2.txt
5) myspace.txt
6) NordVPN.txt
7) 10-million-password-list-top-1000000.txt
8) 100k-most-used-passwords-NCSC.txt
9) probable-v2-vpa-top4800.txt

10) Lizard-Squad.txt
11) phpbb.txt
12) tuscl.txt
13) Top304Thousand-probable-v2.txt
14) Top204Thousand-probable-v2.txt
15) Appearances-Top304Thousand-probable-v2.txt

4 METHODS & ANALYSIS

All models and implementations will utilize one or both of
two potential inputs: a custom wordlist composed of data
that can be obtained through social media or compromised
plaintext password datasets. The model or algorithm will
then be used to generate wordlists. Wordlists may have
varying lengths. However, they will all be given the same
amount of effort as this experiment focuses on what the
average attacker can do a benefit from. Lastly, the generated
wordlists will be compared to several potential passwords
chosen by the tester. Several string similarity functions will
be used to quantitatively determine the performance of
each wordlist in guessing or approximately guessing the
actual password. Due to lack of instances for social media
OSINT data compared to actual passwords and absence of
such a dataset, a combined histogram for each similarity
metric will be produced to show the similarity or distance
distributions of the guess vs. the actual password. This will
represent the effectiveness of each algorithm for targeted
password guessing attempts.

4.1 General Architecture

Fig. 1. Example architecture

Figure 1 exemplifies a potential architecture that could
be used with AI or ML-based models. In the top-left data
is scraped from various social media websites, public web-
sites, location data, Wikipedia crawls, and any other form
of OSINT. This data is then prepared, cleaned, and curated
into unstructured textual data. This data can bed fed into
various models where stopwords may be removed or other
forms of data transformation may take place. Moreover, key-
word expansion could also take place where the extracted
keywords or sentences are expanded into other potentially
useful points of data. AI and ML models are then trained
on large datasets of compromised and realistic passwords.

CIT 52600 42100 BIG DATA ANALYTICS 6

These datasets can be distributions or they can be dedupli-
cated. This depends on the model being used. After models
are trained on the password data, they are also fed the data
obtained in the OSINT and application phase. The model is
then used to generate potential wordlists. These wordlists
can be used in a password cracking tool which utilizes the
GPU and is optimized for hashing and comparing hashes.

4.2 Keyword List Creation

Fig. 2. My old Instagram page and biography.

Fig. 3. Used a tool online to convert txt file to ”;” delimited version for use
with other tools.

As seen in figure 2, my account does not have very much
information. However, it does have points of information
that I am likely to value the most including family informa-
tion (brother), girlfriend’s name and anniversary, religion,
and other potential keyword from posts that are not shown.
This data is aggregated into a ”.txt” file to be used with other
programs. I even convert this later on into a tab delimited
version as shown in Figure 3.

4.3 Dataset Aggregation

Plaintext password datasets will only be used for the
OMEN+ ML model due to it being the only available
targeted model that can utilize password datasets.

4.3.1 Dataset Sources
Datasets are obtained from multiple sources:

1) https://haveibeenpwned.com/Passwords
2) https://figshare.com/articles/dataset/ Ya-

hoo Password Frequency Corpus/2057937
3) https://hashes.org/leaks.php
4) https://github.com/rndinfosecguy/pastePasswordLists
5) https://github.com/berzerk0/Probable-

Wordlists/tree/ master/Real-Passwords
6) https://github.com/kennyn510/wpa2-

wordlists/tree/ master/Wordlists
7) https://haveibeenpwned.com/Passwords
8) https://github.com/danielmiessler/SecLists/tree/

master/Passwords

4.3.2 Aggregating Text Files

Fig. 4. Windows CMD script to combine text files.

I used multiple tools to try combing the text files (Win-
dows OS):

• Dymerge
• Text Merge.exe
• A basic Windows CMD script.

The HIBP (HaveIBeenPwned) dataset was about 50 gi-
gabytes. Combining very large text files was not straightfor-
ward. Turns out, the CMD script was the most reliable (Fig.
4).

4.3.3 Accidentally Used Hashes For Most of the Data
Turns out, the HIBP dataset consisted completely of about
50 GB of SHA-1 hashes. Although these can be cracked
easier than other hashes, this was not what I was looking
for. This was only found out after using the tool ”Klogg”
(https://github.com/variar/klogg) to open the rather large
text files and seeing nothing but hashes.

4.3.4 Dataset Cleaning and Preparation - Deduplication &
ASCII Encoding
Most of the plaintext password dataset preparation in-
volves getting rid of duplicates. Although OMEN could
maybe work with better with a realistic distribution, it is
not worth trying to do that considering OMEN+ works
better with certain use cases or hashses such as bcrypt,
PBKDF2, scrypt, or Argon2 [15]. Therefore, duplicates can
be removed. Tools from the Unified List Manager for Win-
dows are used (https://unifiedlm.com/Home). Specifically,

CIT 52600 42100 BIG DATA ANALYTICS 7

Fig. 5. Unified List Manager - sort 64 low memory to get rid of duplicate
passwords from the combined dataset of plaintext passwords.

Fig. 6. Example of line in password dataset that breaks most wordlist
generators.

”sort64lm” is used to go through the aggregated file, get
rid of duplicates, and sort the file alphabetically. Figure 6
shows an error that occurs with OMEN+. In order to run any
password datasets through OMEN+ only ASCII characters
can be used. This could be problematic especially on realistic
datasets that are much larger. This goes to show that tools
are not good enough yet for realistic use cases with targeted
password guessing. However, a simple fix is to just remove
the character using the ”enconv” command in Linux. An
error about not having enough characters for lines in the
text file also occurred. There were lines ranging from one
chracter to eight characters long. This error is quite helpful
in creating wordlists, because using passwords that are too
short will be useless to realistic password cracking. After
all, passwords shorter than eight characters are practically
cracked instantly. Linux also has commands for deleting
these lines.

4.4 Wordlist Generation

4.4.1 Training AI & ML Models - only OMEN+

Creating a wordlist in OMEN+ is quite straightforward as
outlined in their GitHub documentation. A few commands
are run: a command to generate an alphabet from the dataset
file, a command to create the ”enumerator” model, and then
a command to generate a wordlist of some user-defined
length. Training could not be done with the GP3 model,
because the access costed money or more effort than was
necessary for this project.

Fig. 7. Kali Linux screenshot of OMEN creating an enumerator.

4.4.2 Scraping Data from GPT3 Password Generator

Fig. 8. Scraping Data from the Targeted Password Guessing Heroku
App found in the Automated Targeted Password Guessing GitHub page
- https://github.com/ACM-Research/targeted-password-guesses

Learning how to create my own GPT3 model through
OpenAI was not feasible in one semester. Therefore, I utilize
a live Heroku App that was linked from the GitHub page
for ”targeted-password-guesses.” Heroku apps are sort of
like little servers that can be run at a very low price
while still having good enough computation power for
little API-based projects. In this case, the Heroku app sends
personally-related data (username, social media bio, name,
birthday) to the OpenAI API and utilizes a trained GPT3
model to generate password guesses based on the data
inputted in the Heroku app. This data is sent back to the
Heroku app to be displayed. In this case, I wrote a 200-
line Python script using Selenium to scrape the data and
automatically keep sending requests. These requests were
stored line-by-line in a text file [16].

4.4.3 A failed AI-based attempt - PassHemorrhage

After running this tool and sending a few issues into
GitHub, it was apparent that this project was discontinued.
This project utilized a GAN-based implementation that fed
any type of personal data into the mix. This was the only
implementation of a targeted model that was GAN-based.
Sadly, this did not work out as there were a lot of errors in
the actual code. It even used an outdated version of Python
[23].

CIT 52600 42100 BIG DATA ANALYTICS 8

4.4.4 ”Naive Permutation” - Cordialie
Cordialie is a naive attempt at creating permutations of
inputted keywords. It does not actually create permutations
though, despite the claims on the GitHub page. However,
cordiale does mangle the inputted keywords to look like po-
tential clever versions of the keywords. It also may append
commond suffixes or prefixes to the keywords, transform
certain characters to ”l33t” versions of the characters, and it
changes capitalization [14].

4.4.5 ”Manual/Permutative/Mangler” - Mentalist

Fig. 9. The Mentalist GUI running in a Kali Linux virtual machine.

Mentalist is the epitome of keyword permutations and
mangling flexibility. The keywords from the OSINT phase
are fed into the program as ”Base Words.” Then, the user
can define how to create permutations between ”case”,
substitution, append, or prepend. Between these actions, the
user can generate limitless types of patterns or passwords.
In this case, the keywords from OSINT are combined in
every possible order, the first letter of each keyword is made
upper and lowercase, and characters are appended to the
end in some permutations. Just to be clear, each of these
actions do or do not take place in some permutations so that
every combinations of keywords and actions in Mentalist
is taken. This results in text files that are on the scale of
gigabytes [26].

4.5 Evaluation using String Similarity Metrics

Fig. 10. Custom string similarity code running on Kali Linux VM.

A python program was created to compare each pass-
word guess from the generated wordlists to the hypothet-
ical password. The hypothetical password uses the same
structure as an old and known password that was being
used with the account. In this case, we are testing each
password guess with the password - ”Ilovegrace2016.”
Comparison is done in python using the ”python-string-
similarity” library [22]. Two string similarity algorithms
are used including Damerau-Levenshtein and the Jaccard
index. Damerau-Levenshtein is a string-distance algorithm
where the distance is ”is the minimum number of operations
needed to transform one string into the other, where an
operation is defined as an insertion, deletion, or substitution
of a single character, or a transposition of two adjacent
characters.” Jaccard index is a similarity computation that
is formally defined as the size of the intersection divided by
the size of the union of the sample sets.

5 FINDINGS

5.1 Output of String Similarity Stats

Fig. 11. Wordlist stats.py (created by me) running in Kali Linux.

5.1.1 Runtime Over GPT3 (Ada) Wordlist
• Guesses: 6097
• Damerau-Levenshtein runtime: 0.007 seconds
• Jaccard runtime: 0.08 seconds

5.1.2 Runtime Over OMEN+ Wordlist
• Guesses: 503,593
• Damerau-Levenshtein runtime: 40 seconds
• Jaccard runtime: 6 seconds

5.1.3 Runtime Over Cordialie Wordlist
• Guesses: 4,897,170
• Damerau-Levenshtein runtime: 10 minutes 11 sec-

onds
• Jaccard runtime: 1 minutes 36 seconds

CIT 52600 42100 BIG DATA ANALYTICS 9

5.1.4 Runtime Over Mentalist Wordlist
• Guesses: 2,637,754
• Damerau-Levenshtein runtime: 5 minutes 35 seconds
• Jaccard runtime: 37 seconds

5.1.5 GPT3 Results

Fig. 12. Similarity & Distance Distributions - GPT3

5.1.6 OMEN+ Results

Fig. 13. Similarity & Distance Distributions - OMEN+

5.1.7 Cordialie Results

Fig. 14. Similarity & Distance Distributions - Cordialie

5.1.8 Mentalist Results

Fig. 15. Similarity & Distance Distributions - Mentalist

5.2 Final Findings

5.2.1 Notes on Similarity and Distance Metrics

It is important to note that the distributions are displayed
using a logarithmic scale instead of a linear one. This is
because the amount of guesses that are similar to the actual
password will be small compared to the number of guesses
that fall into more dissimilar scores in the distribution.
Additionally, for the Damerau-Levenshtein distance metric,
many results are not shown on the graph because the
distance is more than 10. This explains why the total amount
of guesses on the Damerau-Levenshtein distribution will not
add up to the total number of guesses. On the contrary, the
Jaccard chart guesses should add up to the total number of
generated guesses.

5.2.2 AI vs. Manual

There is no question that word mangling and permutation
are the winner for targeted password cracking. The problem
with both GPT3 and OMEN+ seems to be that the tools
are more affected by their training dataset than the OSINT
data which is given during wordlist generation. However,
Cordialie performed the worst despite it supposedly
being able to ”print hundreds to millions of possible
combinations for a specific target easily [14].” When diving
into the Cordialie wordlist, one will find that it rarely
generates smart combinations of the keywords, but rather
appends, preprends, and transforms keywords at seemingly
at random. This may be good for keyword expansion and
creating new keywords for permutation. However, it does
not perform well and results are dissimilar to the actual
password. For OMEN+ (machine learning model), the
results are better than Cordialie, but still far from ideal for
password cracking. In fact, they even state that OMEN is
better for cracking large datasets of certain types of hashes,
and they recommend using dictionaries and mangling rules
for other targeted attacks or attacks on ”very fast hashes
[15].” It is important to note the shape of the distribution
is important. The charts are displayed in a logarithmic
scale and cases where the distribution has a ”straight” slant
means that combination and permutation are more likely
and that human-like or smart generation is probably not
being done. This would explain why the GPT3 distribution
looks the way that it does. OMEN+ does not perform
terribly, because it had results that were only 6 distance
away from the actual password. The string similarity also
didn’t have terrible metrics with 4 or 5 results with 0.6
similarity. OMEN+ is likely to perform better on larger
datasets, and this conclusion comes from analysis of the
generated words, the guess distribution, and writings from
its creator.

The performance of the GPT3 model does not seem
great on the surface. However, one could argue that is
performs beautifully. A straight or gradual slant for the
results in the string similarity metric will mean that the
password appears somewhere in the guess or partly in the
guess. This would especially be true for password manglers
where the keywords can be combined in a way to make an
exact match for the true password. In other words, word
mangling and combination are naive ways of finding the

CIT 52600 42100 BIG DATA ANALYTICS 10

password. Due to the nature of the similarity algorithm
and permutative methods, a straight slant means that the
user who is conducting OSINT must have obtained the
exact or almost-exact keywords that make up the target’s
real password, and they must have also had knowledge
of the target’s password structure around those keywords.
GPT3 is promising because the curve is not a gradual
slope, but rather more of an ”exponential” one. This means
that it is not combining keyword in some sort of dumb
approach, but rather taking the OSINT data combined with
knowledge about passwords and creating wordlists that are
innovative. Nonetheless, it still currently performs terribly
for targeted password guessing attacks. Not to mention,
the rate of generation for GPT3-based implementations
is extremely slow. Manual and ML methods generated
wordlists 10,000 times faster than GPT3 because it uses an
API and must make requests to an external server. Despite
the small number of requests, the similarity still yielded
results that are promising. If a better model could be trained
or utilize a different approach, then smart AI-based text
generation such as with GPT3 could be very good realistic
targeted attacks.

It’s obvious when looking at the results, that Mentalist
performed the best. Mentalist is a modular approach to
word mangling and permutation of wordlists or dictionaries
(same thing). There are results that also perfectly match
the real password. The shape of the distribution is a
slant precisely because of what was previously explained.
Mentalist was used to do combinations of keywords while
appending, prepending, and transforming the keywords
and permutations based on what the user configured.
The distribution looks good, but the straight slant comes
as a result of the combinatory nature of Mentalist. For
example, combing ”I”,”love”, and ”2016” would be close
to the real password, and the result woulf be a high metric
for similarity, but this only happens because the user
explicitly defined the correct keywords. Mentalist definitely
outperforms every other approach in every way, but that
fact only stands for the time being and until better text
generation approaches are utilized with AI for wordlist
generation [26].

5.2.3 Password Choice Caveats, Bias, and Explanations of
Results
There is quite a lot of problems with the approach. This
stems from the limits of finding datasets where a password
and OSINT data are paired together. Such datasets do no
exist. Therefore, an approach was taken which assumed that
the ”guesser” had the OSINT data of the user, and they also
knew the general pattern or structure of their password.
Essentially, the guesser knew the exact keywords and the
relative structure of the password, but they did not know
the order of the keywords within that structure. To say that
this has an effect on the results is an understatement. In
terms of keywords choice from OSINT, there are words that
could be considered stopwords, but are actually a part of
the password such as the word ”love.” In this case, ”love”
was included with the keywords because the guesser knew
that the word ”love” could be used between nouns like
with a girlfriend’s name or a dog’s name. These are lucky

assumptions and it is not likely these assumptions would be
made in a realistic situation. Moreover, there are numerous
generated guesses that make no sense in terms of human-
understood phrases or password structures. For example,
the name ”mike” might be used and Mentalist generates
the guess ”mike-mike-mike-mike-mike.” This would never
appear as someone’s password, but something like ”mike-
likespancakes” may appear. This is vindicative of where a
model that understands passwords like humans do would
come in handy. In reality, the problem of targeted password
guessing is quite difficult, and technology has simply not
reached the point where it is viable.

5.3 Relevant Threats & Attack Assumptions
5.3.1 Nation States & High Profile Attacks
Realistically, these attacks are likely not being utilized
against the average citizen. There are numerous other attack
vectors that are ”low-hanging” or easier to leverage than
a complicated guessing attack. However, a targeted attack
such as the ones outlined and the ones hypothesized could
theoretically be a current reality for state-sponsored and
state-supported attacks. For example, their may be a target
for some country where everything around the target is
relatively secure except for an obtained password hash. The
APT (advanced persistent threat) may utilize smart targeted
password attacks to figure out the password. Such attacks
are likely far and few as there is no evidence of such an at-
tack which is being talked about. Such attacks are probably
only conducted on the domestic and low-level hacker front
for fun or for proof-of-concept. Hardware dilemmas with
such attacks also support this assumption because wordlists
can become very large and require extensive computational
power to utilize.

5.3.2 Risk Model & Recommendations
In order for this attack to take place, the attacker needs to
know information about the target (anything memorable)
and what the structure of their password likely is.
Additionally, certain verbs and stopwords may be included
between keywords in passphrases. Due to the complexity
of language, the sheer number of stopwords in the English
dictionary, and the limitations of proposed GPT3 models it
can be concluded that targeted password attacks are a low
risk to the average individual.

However, if the user does want to be safe from other
password attacks, then I would give 3 recommendations.
Firstly, use a password manager to store and generate
passwords for all of your services. Make sure to have a
long passphrase that does not utilize keywords that are
connected to publicly available information about you. Use
inside jokes or secrets about you that are easy to remember.
Secondly, use multi-factor authentication for accounts with
high-risk data or functionality. Thirdly, check your security
and privacy settings for applications that you use.

6 CONCLUSION

Targeted password cracking that utilizes OSINT data about
an individual has not matured enough to be viable for the

CIT 52600 42100 BIG DATA ANALYTICS 11

average or even advanced attackers. Only state-sponsored
attacks could utilize such attacks in a cost-effective manner.
AI and machine learning models are great for cracking
large datasets of passwords, but they are not sophisticated
enough to understand language as humans do and cre-
ate realistic password guesses. Therefore, AI models such
as ”GPT-3” (trained on 10,000 examples) and ”OMEN+”
perform poorly in targeted attacks. This is true even for
the case where the attacker knows the exact keywords and
the password’s structure. Mangling and explicitly-defined
methods such as with ”Cordialie” and ”Mentalist” are
very effective for targeted dictionary attacks or password
guessing. However, this is only true if the attacker knows
the keywords that make up the target’s password and the
structure of the password. These findings are proven to
be true through string similarity comparisons between the
guesses and the actual password, and work is also done to
understand the significance of the results.

7 RELATED TOPICS & HYPOTHESES

If I were to create a targeting password guessing framework
then I would need several components. The method would
need to have the ability to learn password patterns and
structures based on large datasets. Secondly, the approach
must involve the use of ontology (problem domain) and
keyword expansion by using various ontology of knowl-
edge graph models. For example, if given the word ”In-
dianapolis”, then the system would generate other key-
words related to Indianapolis such as ”IUPUI”, ”Jaguars”,
”Pacers”, ”White River”, and other words that relate to
Indianapolis. These keywords would then be fed into a
smart AI-based model that could understand knowledge
graph models and password patterns. This model would
generate passwords that are very close to the real password
by generating realistic, memorable, and ”smart” guesses.
Such methods have been outlined using Wikipedia data, but
the methods still need some refining [12].

REFERENCES

[1] Why people (don’t) use password managers effectively, 2019.
[2] 2020 cyber threat intelligence report, 2020.
[3] An implementation and evaluation of PDF password cracking using john

the ripper and crunch, 2021.
[4] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick

Gaudry, Matthew Green, J Halderman, Nadia Heninger, Drew
Springall, Emmanuel Thomé, Luke Valenta, Benjamin Vander-
sloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zim-
mermann. Imperfect forward secrecy: How diffie-hellman fails
in practice. Communications of the ACM, 62, 10 2015.

[5] Shaukat Ali, Naveed Islam, Azhar Rauf, Ikram Ud Din, Mohsen
Guizani, and Joel . Privacy and security issues in online social
networks. Future Internet, 10(12), 2018.

[6] Vijayalakshmi Atluri, Di Pietro, Christian D Jensen, and Weizhi
Meng, editors. The Revenge of Password Crackers: Automated Training
of Password Cracking Tools. Computer Security – ESORICS 2022,
Springer Nature Switzerland, 2022.

[7] Avast. 83
[8] Gabriel Bassett, C. David Hylender, Philippe Langlois, Alex Pinto,

and Suzanne Widup. Dbir data breach investigations report, 2022.
[9] Daniel Brecht. Password security: Complexity vs. length [updated

2019], 01 2021.
[10] Claude Castelluccia, Chaabane Abdelberi, Markus Dürmuth, and

Daniele Perito. When privacy meets security: Leveraging personal
information for password cracking. 04 2013.

[11] Federal Trade Commission. Use two-factor authentication to
protect your accounts, 09 2022.

[12] Sein Coray. Óinn: A framework for large-scale wordlist analysis and
struc-ture-based password guessing. PhD thesis, 2019.

[13] Casey Crane. What is a hash function in cryptography? a begin-
ner’s guide, 01 2021.

[14] Victor Viccenzo Franchesco. cordialie, 11 2022.
[15] Maximilian Golla. Omen: Ordered markov enumerator, 11 2022.
[16] Roman Hauksson and Brad Johnson. Automating targeted pass-

word guessing, 03 2022.
[17] Aikaterini Kanta, Iwen Coisel, and Mark Scanlon. A survey

exploring open source intelligence for smarter password cracking.
Forensic Science International: Digital Investigation, 35:301075, 2020.

[18] Branko Krstic. Impressive password statistics to know in 2022, 04
2022.

[19] Masaaki Kurosu, editor. Why users ignore privacy policies – a survey
and intention model for explaining user privacy behavior. Springer
International Publishing, 2018.

[20] S Li, Z Wang, R Zhang, C Wu, and H Luo. Mangling rules
generation with densitybased clustering for password guessing.
IEEE Transactions on Dependable and Secure Computing, pages 1–13,
2022.

[21] Ponemon Institute LLC. The 2020 state of password and authenti-
cation security behaviors report, 2020.

[22] luozhouyang. python-string-similarity, 12 2022.
[23] Mandex. Hollow667/passhemorrhage, 11 2022.
[24] Phil Muncaster. Password reuse at 6003 2021.
[25] OWASP. Password storage · owasp cheat sheet series, 2022.
[26] Henry Prince. Mentalist, 12 2022.
[27] Fintechnews Singapore. Passwords still the most-used authentica-

tion method which is proving to be costly, 10 2022.
[28] Media Sonar. Is osint legal?, 2020.
[29] Security.org Team. Password manager and vault 2021 annual

report: Usage, awareness, and market size, 12 2022.
[30] Aliza Vigderman. Password manager and vault 2022 annual

report: Usage, awareness, and market size, 12 2022.
[31] Alex Weinert. Your pa$$word doesn’t matter, 07 2019.
[32] Chris Woodford. How do locks and padlocks work?, 07 2008.
[33] Naomi Woods and Mikko Siponen. Too many passwords? how

understanding our memory can increase password memorability.
International Journal of Human-Computer Studies, 111:36–48, 2018.

[34] Naomi Woods and Mikko Siponen. Improving password memo-
rability, while not inconveniencing the user. International Journal of
HumanComputer Studies, 128:61–71, 2019.

[35] M Yıldırım and I Mackie. Encouraging users to improve password
security and memorability. International Journal of Information
Security, 18:741–759, 2019.

[36] Huanguo Zhang, Bo Zhao, and Fei Yan, editors. Password Guessing
Based on Semantic Analysis and Neural Networks. Trusted Computing
and Information Security, Springer Singapore, 2019.

